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Within the hydromagnetic approximation, the effects of resistive, 

viscous, and thermal conduction dissipation on the structure of shock 

waves is studied. A perturbation analysis about the upstream and down- 

stream stationary points is developed, which, when coupled with the shock 

evolutionary conditions, determines the conditions for the formation of 

discontinuities in the shock structure. The viscous subshock for fast 

shock waves and the hydromagnetic analogue of the gas dynamic isothermal 

discontinuity for fast and slow shocks are analyzed. Very oblique fast 

shocks require both resistive and viscous dissipation for a steady 

shock structure. Strong slow shocks propagating nearly along the magnetic 

field fail to steepen if only resistive dissipation is included. The 

rotational discontinuity does not possess a stable shock structure for 

any of the dissipation processes considered. 



1,O Introduction 

An initial approach in investigating the structure of hydromagnetic 

shock waves is to include the dissipative terms in the hydromagnetic 

fluid equations (Marshall, 1955; Anderson, 1963 and references therein; 

Leonard, 1966). With various approximations often including only one 

dissipation process, these equations reduce to a differential equation 

which describes the variation of the plasma quantities through the shock 

front and yields an estimate of the shock thickness. For strong shocks, 

however, a single dissipation process is frequently incapable of satisfying 

the Rankine-Hugoniot jump conditions. It is the purpose here to determine 

for what flow conditions multiple dissipation mechanisms are a required 

part of the shock structure. 

The dissipation rate in a shock wave depends inversely on the shock 

thickness (Kantrowitz and Petschek, 1966). If the strengths of the 

dissipative terms are sufficiently different, i.e., if the characteristic 

scale length of each type of dissipation is different, the shock structure 

is often resolved into two or more regions: a broad shock transition 

in which some of the plasma quantities vary smoothly from their upstream 

to downstream values, and a thin or "discontinuous" region, called a 

subshock, located within the broad transition. Across the subshock 

some plasma quantities undergo a sharp transition, and remain roughly 

constant throughout the remainder of the shock front. The isothermal 

discontinuity (Landau and Liftshitz, 1959) for gas dynamic shocks and 

the viscous discontinuity for the fast perpendicular hydromagnetic shocks 

(Marshall, 1955) are examples of subshocks. 



Considerable information about the shock structure is derivable 

from the evolutionary conditions (Anderson, 1963) and the propagation 

of linear waves with finite dissipation. Within the hydromagnetic approxi- 

mation the dissipation processes considered are resistivity, viscosity, 

and thermal conductivity. For purposes of review and to fix notation, 

the evolutionary conditions are: 

Fast Shock: 

Rotational Discontinuity: 

Slowshock: C 2 U 1  >CSLl; C > U 2  
I1 SL2 

CFr CIt CSL are the fast, intermediate, and slow hydromagnetic speeds, 

respectively, and are defined in section 2.0; U is the normal component 

of the flow velocity; subscripts 1 (2) refer to upstream (downstream) 

flow conditions. Kantrowitz and Petschek (1966) demonstrated that the 

rotational discontinuity is non-evolutionary, a conclusion which is 

reinforced by the discussion of section 4.0. 

A very brief and rough analysis of the effects of dissipation on 

linear hydromagnetic waves is given in section 2.0 .  Since the interest 

here is concerned with wave propagation near the shock front, the limit 

of wavelengths comparable with dissipation scale lengths is considered. 

A physical discussion of the downstreaii~ conditions leading to the 

formation of a subshock is qiven in section 3.0. Prom the steepening 

arguments and rhe linear wave analysis of section 2.0, the resistive 

fast shock propagating perpendicular to the maqnetic field is shown to 



develop a subshock if the sound speed exceeds the flow velocity downstream. 

Oblique propagation of fast and slow shocks with resistive and thermal 

conduction dissipation is discussed using Friedrich's diagrams. 

In section 4.0 a perturbation method is presented by which the 

stability, to be defined precisely below, of both the upstream and 

downstream stationary points of a shock for a given dissipation process 

is determined. The results of section 3.0 about the downstream point 

are readily recovered. Under certain conditions the upstream point of 

the resistive slow shock fails to steepen indicating that resistivity 

alone is incapable of starting the shock transition. Fast and slow 

shocks in which the magnetic field changes across the shock cannot be 

purely viscous, but are either resistive if the shock is weak or contain 

a combination of resistive and viscous dissipation. For the types of 

dissipation considered here the rotational discontinuity does not possess 

a stable transition from upstream to downstream flow conditions. 

It is not the purpose here to determine for what Mach number and 

upstream plasma conditions multiple dissipation mechanisms are required. 

The criteria developed for subshock formation combined with the Rankine- 

Hugoniot relations will provide a solution to this problem. Since, 

except for particularly simple shock conditions, this would require a 

rather involved and tedious computation, only physical results will be 

emphasized here. 



2 - 0  Linear Theory 

2.1 Hydromagnetic Equations 

The hydromagnetic equations with dissipation including Ohm's 

law and Maxwell's equations are (Landau and Lifshitz, 1960) 

p is the mass density, v the fluid velocity, P the pressure assumed - 

equal and isotropic for electrons and ions, B the magnetic field, T the - 
temperature, y the ratio of specific heats, and C the velocity of light. 

Gaussian units are used throughout. The adiabatic equation of state, 

P/pY = constant, was assumed in deriving the energy equation. The 

dissipation coefficients are the scalor conductivity 0 ,  the thermal 

conductivity K ,  and the two coefficients of viscosity n and <; 0 is the - - 
viscous stress tensor 



6ik 
equals 1 if i = k, and zero otherwise. 

For the purposes of this paper the dissipation coefficients 

are assumed constant, independent of the plasma state and position. As 

will be discussed below, this assumption is not overly restrictive. The 

transport properties described by these idealized dissipation coefficients 

can be interpreted as arising from particle-particle Coulomb collisions 

or, in a collisionless plasma, from the wave-particle interactions of 

plasma turbulence theory. For collisionless phenomena equations 2.1, 

however, are inappropriate and should be replaced with the two fluid 

equations for electrons and ions, including finite gyroradius effects 

and the contributions to the energy and momentum equations from turbulent 

wave fields. The hydromagnetic theory is useful, however, in elucidating 

the effects of various dissipation mechanisms; the conclusions, therefore, 

are expected to be appropriate in principle, if not in detail, to a 

collisionless theory. 

2.2 Linear Hydromagnetic Waves 

To obtain the linear hydromagnetic response, the plasma 

parameters in equations 2.1 are expanded about a uniform, stationary 

state, and second and higher order terms in the fluctuating quantities 

are neglected. In this section it is assumed that the stationary magnetic 

field is in the z direction, - B o  = Bo Sz, and that the stationary electric 

field and fluid velocity vanish. Stationary quantities are denoted by 

a zero subscript. After Fourier analyzing in space and time as 



ik * 5 - iwt 
e - , the above set of equations is reduced to the following 

dispersion relation 

where 

C is the Alfvgn speed, C the sound speed, and 8 is the angle between 
A S 

k and Bo. - - 

The dispersion relation 2.3 contains twelve modes, six of 

which are the hydromagnetic waves modified by dissipation, and the other 

six of which depend primarily on the dissipation and are highly damped 

(~anos, 1956). For the present purpose only a limited amount of 

information about the hydromagnetic waves is required, and the highly 

damped modes will be neglected. The derivation and discussion will 



be very imprecise ,  i n  p a r t i c u l a r  w i th  r e spec t  t o  comparing t h e  r e a l  

and imaginary p a r t s  of t he  frequency o r  wave vec tor  ( see  Trehan, 1965, 

f o r  a more complete d i s c u s s i o n ) .  The d i s s i p a t i v e  terms a r e  assumed 

t o  be reasonably small  so  t h a t  a wave is only weakly damped. Since 

only the  r e a l  p a r t  of t he  d i spe r s ion  r e l a t i o n  i s  needed below, t h e  l a s t  

term i n  the  second b racke t  of 2.3 can be neglected without  s e r i o u s  e r r o r ,  

and 2.3 can be w r i t t e n  a s  

where 

- 
I f  t he  d i s s i p a t i v e  terms a r e  dropped from ? 

A' 's' 2.4 de f ines  t h e  i n t e r -  

mediate speed, 
C~ 

and 2.6 the  f a s t ,  CF, and slow, CSLr hydromagnetic 

speeds (Kantrowitz and Petschek, 1966).  

Before proceeding it is convenient t o  de f ine  t h r e e  subs id i a ry  

d i s s i p a t i o n  o r  d i f f u s i o n  lengths :  



CHM 
i s  t o  be assigned the  hydromagnetic speed of the  p a r t i c u l a r  wave 

being considered; r and r a r e  the  lengths t h a t  make the  magnetic Reynolds 
m e  

number and the  viscous Reynolds nuniber equal t o  uni ty ;  r i s  the  s c a l e  t 

length f o r  thermal d i f fus ion.  

The discussion of subshocks i n  sec t ion  3.0, involves 

considerat ion of hydromagnetic waves o r  wave packets local ized  t o  the  

region of the  shock layer  (Anderson, 1963). Since the lengths defined 

by 2.7, 2.8, and 2.9 a r e  typ ica l  of the  shock layer  thickness formed 

by t h e i r  respect ive  d i s s ipa t ion  processes, the  appropriate l i n e a r  waves 

have k r  >> 1, k r  >> 1, and k r  >> 1. These three  sca le  lengths 
m e t 

a r e  usually of d i f f e r e n t  magnitude, thus permit t ing the  e f f e c t s  of each 

on the hydromagnetic wave speeds t o  be considered separa te ly .  Only the  

phase ve loc i ty  of the waves is needed, so t h a t  w and k a re  now considered 

r e a l ,  and imaginary contr ibutions t o  the  frequency o r  wave vector  a r e  

dropped. 

2.2.1 Res i s t iv i ty  

When r e s i s t i v i t y  is the  m o s t  important d i s s i p a t i o n  

process,  only the  ~ l f v g n  speed is a f fec ted  so  t h a t  C2 becomes 
A 

I f  the wavelength is  small compared t o  the  r e s i s t i v e  d i f fus ion  length ,  

k r  >> 1, the  e f f e c t i v e  ~ l f v g n  speed i n  the  plasma i s  reduced t o  zero. 
m 

In  these waves the  perturbat ion cur ren t s  a r e  r e s i s t i v e l y  d i s s ipa ted  s o  

t h a t  magnetic f luc tuat ions  do not propagate, Set t ing  C2 = 0 i n  2 . 4  
A 



- 
and 2.6, the three hydromagnetic speeds become C - 

I 
- CSL = 0 and 

- 
CF = C . the intermediate and slow waves cease to propagate, and the s ' 

fast wave becomes an isotropic sound wave. 

2.2.2 Thermal Conductivity 

If 0 = and ?I = 5 = 0, the sound speed becomes 

When kr >> 1, E i  -+ S i  = Po/pp ; the effective ratio of specific heats 
t 

becomes unity, which is characteristic of an isothermal plasma. For 

these waves heat is diffused sufficiently rapidly that no temperature 

fluctuations are propagated. The intermediate speed is unaffected for 

kr >> 1, and substituting ? for ? in 2.6 defines the fast and slow 
t s s 

speeds ? and 
F SL' 

Note that C 
F 

> EF and C 
SL > ?SL. 

Setting 0 = sand K = 0, the dispersion relation 2.3, 

after a bit of manipulation, becomes approximately 



For kr >> 1, the phase velocities of all three hydromagnetic waves are 
e 

reduced to zero, Hence, as might be expected, in a very viscous plasma 

no fluctuations propagate. 

In summary for kr large, no magnetic information 
m 

is transmitted leaving only pressure fluctuations propagated by the 

fast wave isotropically at the sound speed. Waves for which kr is 
t 

large propagate isothermally in the plasma. The fast and slow wave 

speeds are somewhat reduced. Finally for kr large, viscosity slows 
e 

all three hydromagnetic wave speeds to zero. Although the derivation 

given here of the dissipative effects on the linear hydromagnetic waves 

has been extremely rough, the conclusions are essentially correct. In 

the next section this information permits a physical discussion of the 

effects of different dissipation processes on the shock structure. 

3.0 Physical Discussion of Downstream Subshocks 

To understand the physical basis for the formation of a subshock, a 

slightly elaborated form of an argument due to Kantrowitz and Petschek 

(1966) is presented in section 3.1 for the particularly simple case of a 

perpendicular resistive fast shock. After establishing the fundamental 

concepts, oblique progagation for fast and slow shocks in which resistivity 

and thermal conductivity separately provide the shock dissipation is 

discussed in section 3 - 2 .  

3.1 Per~endicular Fast Shock 

Consider the problem in which a piston launches a fast non- 

linear pulse perpendicular to a uniform magnetic field. Following the 

arguments reviewed by ~antrowitz and Petschek (1966), the pulse steepens 



u n t i l  i t s  thickness reaches the  longest d i s s ipa t ion  length cons i s t en t  with 

the entropy production necessary t o  s a t i s f y  the  Rankine-Hugoniot condit ions.  

Assume a  steady shock is  thereby formed i n  which r e s i s t i v i t y  provides a l l  

the d i s s ipa t ion  so  t h a t  the  shock thickness i s  the  order of the  magnetic 

d i f fus ion  length. 

The p i s ton  now launches another f a s t  wave which, by the  

evolutionary condit ions,  must catch up with the  shock f ron t .  This wave 

steepens u n t i l  i t s  gradients  a re  a l s o  the  order  of the magnetic d i f f u s i o n  

length,  and from sect ion  2.2.1 i t s  propagation speed i s  then reduced 

t o  the  sound speed. I f  the  flow ve loc i ty  behind the  shock exceeds the  

sound speed, the  wave cannot reach the  shock and the  shock s t r u c t u r e  

remains steady;  on the  o ther  hand, i f  the  flow ve loc i ty  behind is l e s s  

than the  sound speed, the  wave overtakes the  shock thus providing the  

shock with addi t ional  energy. Therefore, s ince  r e s i s t i v i t y  cannot prevent  

the  shock s t r eng th  from increasing,  the  shock f r o n t  continues t o  s teepen 

u n t i l  the  next smaller d i s s ipa t ion  length,  f o r  example, v i s c o s i t y ,  is  

reached. 

The waves now catching up with the  shock must steepen u n t i l  

t h e i r  wave length becomes comparable to t he  viscous sca le  length. However 

from 2.2.3, v i scos i ty  reduces the  f a s t  wave speed t o  zero. Since the  

flow ve loc i ty  change across the  shock can be reduced by a t  most a f a c t o r  

of about four ,  the  f l u i d  c a r r i e s  a l l  fu r the r  waves downstream so  t h a t  

the  shock ceases t o  steepen. I n  t h i s  shock the  ve loc i ty ,  dens i ty ,  and 

temperature undergo shock t r a n s i t i o n  i n  a thin layer  o r  subshock charac ter ized  

by the viscous sca le  length. The magnetic f i e l d ,  responding only on the  

magnetic s c a l e  length,  has a  th icker  shock t r a n s i t i o n .  The argument is 

summarized i n  Figure l. 



The relative magnitudes of the downstream flow velocity 

and sound speed must be determined by solution of the Bnkine-Hugoniot 

conditions as a function of the upstream Mach number and plasma conditions. 

For the perpendicular fast shock, Marshall (1955) showed that if the Mach 

number is sufficiently large, resistivity no longer provides the required 

dissipation, and a viscous subshock is formed. 

3.2 Oblique Shocks 

The possibility of a subshock exists whenever, after steepening 

to wavelengths comparable to one of the dissipation scale lengths, the 

downstream wave speed exceeds the downstream flow velocity. The allowed 

flow velocities are determined by the evolutionary conditions, and for 

comparison the appropriate hydromagnetic wave speeds are derived in 

section 2.0. In the next two sections Friedrich's diagrams are used to 

discuss separately possible subshock formation for resistive and thermal 

conduction fast and slow oblique shocks. A discussion of the effects of 

viscosity on the shock structure must await the analysis of section 4.0. 

3.2.1 Resistive Shocks 

Figure 2 is a sketch of a single quadrant of a Friedrich's 

diagram for 6 2  < 1 and 6 2  > 1. 6 is roughly the ratio of thermal to 

magnetic energy, and is defined here as 6 = c2/C2 First consider possible 
S A' 

linear fast wave speeds and flow velccities behind a fast resistive shock 

propagating at an a-ngle to the magnetic field for 62 < 1. By the 

evolutionary conditions the flow speed U z  can be less -than the sound 

speed C if C exceeds the intermediate speed C Thereforer from 
s 2 s 2 1 2  

Figure 2 for the fast resistive shock subshock formation is possible over 



-1 the range of angles n/2 2 8 2  2 cos ( C S 2 / C  ) The corresponding 
A2 

limitation on must, of coursei be determined from the Rankine-Hugoniot 

conditions. For smaller angles, U 2  > C > C . Here the increase in the 
I2 S 2  

magnetic field strength across the fast shock is sufficient to prohibit 

further steepening, so that resistivity alone provides the necessary 

dissipation. 

If 6 2  > 1, there exists at all angles a possible U 2  

such that C U 2  < C . Therefore sufficiently strong P 2  > 1 fast shocks 
I 2  s 2 

possess a subshock structure. Note that for 6 2  >> 1, U 2  is less than 

C~ 2 
even for moderate strength shocks. Since for 6 2  >> 1 the fast wave 

which steepens to form the shock is almost electrostatic, resistivity, 

which dissipates magnetic energy, has very little effect on the wave 

speed, and a subshock is to be expected. 

The slow hydromagnetic wave speed is reduced to zero 

when kr >> 1. Since the fluid velocity behind the slow shock must be 
m 

finite, no slow waves can reach the shock, and therefore the slow resistive 

shock does not form a subshock. Across the oblique slow shock the magnitude 

of the magnetic field decreases (Kantrowitz and Petschek, 19661, so that 

resistive dissipation is a required part of the shock structure. 

3.2.2 Thermal Conductivitv 

Consider fast and slow shocks for which thermal conduct- 

ivity is the primary dissipation process. The Friedrich's diagrams of 

the linear hydromagnetic wave speeds for kr << 1 (solid lines) and 
i 

kr >> 1 (dashed lines) with 6 2  < 1 and B 2  > 1 are presented in Figure 3. 
t 

If kr >> 1, the linear wave speeds are defined with y = I. in the sound 
t 



speed. By the previous considerations a subshock formation for thermal 

conduction fast and slow shocks is possible whenever the downstream flow 

velocity is less than the fast or slow linear speed, ? and ? 
F 2 SL2 ' 

respectively. Such a subshock is the hydromagnetic analogue 'of the gas 

dynamic isothermal discontinuity. For fast shocks, U2 < ? is possible 
F2 

at all downstream angles and B2's except for $2 Q, 1 when ? i C may 
F2 I2 

occur at small angles. For slow shocks U2 can be less than ? $or all 
SL2 

downstream angles and B2*s. Note that for 82 << 1 , CF2 Q, , SO that 
F 2 

U2 < ? only occurs for very weak fast shocks. Therefore for sufficiently 
F 2 

strong fast and slow shocks thermal conduction alone is incapable of providing 

the required dissipation, and a subshock structure is expected. 

The above discussion based on the linear hydromagnetic 

wave speeds and the evolutionary conditions about the downstream point 

only indicates the possibility that a subshock might be formed. An explicit 

determination requires solution of the Rankine-Hugoniot conditions and 

will not be discussed here. In the next section a method is developed 

to examine the effects of the various dissipation processes for both the 

upstream and downstream shock conditions. 

4.0 Perturbation about the Shock Stationary Points 

4.1 Introduction 

To investigate the steady shock structure, equations 2.1 are 

assumed to be time independent in a frame of reference moving with the 

shock. A specific coordinate system is chosen such that the shock 

plane is perpendicular to the x axis and the magnetic field is contained 



i n  the x - z plane;  x + -00 is upstream, x +- + i s  downstream. A l l  

q u a n t i t i e s  a r e  assumed t o  vary only i n  the  x d i rec t ion .  ~ q u a t i o n s  2.1 

a r e  then in tegra ted  once with respect  t o  x t o  obtain 

U and V a r e  the  x and z flow v e l o c i t i e s ,  respect ive ly ;  A1 and A2 a r e  
z 

constants  of in tegra t ion .  The momentum equation f o r  V and the  B Ohm's 
Y Y 

law admit only the  solu t ion  V = B = 0 ,  i n  agreement with the  co-planari ty 
Y Y  

theorem. B is ,  of course,  constant  across the  shock. 
X 

Idea l ly ,  t o  solve f o r  the  shock s t r u c t u r e  equations 4.1 -- 4.5 

a r e  reduced t o  a  s ing le  d i f f e r e n t i a l  equation f o r  one va r i ab le  

which descr ibes  the  change i n  t h a t  quant i ty  f r o m  the  upstream s ta t ionary  

point  t o  the downstream s ta t ionary  point  (Anderson, 1963) . A t  the 

s t a t ionary  points  a l l  gradients  a r e  reduced t o  zero and the  plasma 



quantities satisfy the Rankine-Hugoniot conditions. The non-linearity 

of the above equations often renders obtaining a single general differential 

equation difficult. 

Rather than struggle with non-linear differential equations, 

some of the effects of the various dissipation processes on the shock 

structure can be obtained by studying the response of equations 4.1 - 4.5. 
to a perturbation of the plasma parameters about the two stationary points. 

For a shock transition to occur, the upstream (downstream) point must be 

unstable (stable) to the perturbation in the direction of increasing x. 

The definition of stability in this paper is not equivalent to the 

definition employed in the study of shock stability with respect to 

hydromagnetic perturbations (Akhiezer et al., 1959; Germain, 1960; 

Anderson, 1963; Gardner and Kruskal, 1964). There the perturbed plasma 

parameters are restricted to satisfy the linear hydromagnetic dispersion 

relation and the Rankine-Hugoniot conditions. Here the perturbation is 

arbitrary. Finally, since only the linear response of equations 4.1 - 4.5 

is desired, the assumed constancy of the dissipation coefficients is 

justified since, about the stationary points, changes in the dissipation 

coefficients produce terms of second order in the perturbation. 

Following the previous format each dissipation process is 

considered separately. For completeness the rotational discontinuity is 

also included in the discussion. 

4.2 Resistive Dissipation 

Setting the coefficients of viscosity and thermal conductivity 

equal to zero, and performing a perturbation expansion of the plasma 

parameters about their value at a stationary point, e . g . ,  U = U l  i- 6 ~ ,  



6u/ul << 1, equations 4.1 - 4.5 become a set of linear differential 

equations for the perturbed quantities. It is convenient to obtain 

the differential equation for the perturbed magnetic field, 6B . After 
Z 

substituting 4.5 in 4.4, eliminating 6~ using the x-momentum equation 4.2, 

eliminating V and 6~ by 4.3, the energy equation 4.4 reduces to an 
Z Z 

equation involving only 6~ and 6~ . Using this equation and 4.3 in the 
Z 

Ohm's law 4.5, the following equation for 6B is obtained 
Z 

All plasma quantities without specific subscripts are evaluated zt 

either the upstream or downstream stationary point, and are, therefore, 

constant. To eliminate U1B in 4.6, 4-5 and 4.3 are evaluated at a 
7.1 

stationary point to obtain 

Substituting for U1B and rewriting the equation in terns of the 
1 

hydromagnetic fast, slow, and sound speeds, 4.6 becomes 



The coefficient of the gradient is the resistive scale length defined with 

respect to flow velocity. The fast and slow speeds are defined by 2 - 6  

without the dissipation terms where 8 is now the angle between the x-axis 

and the magnetic field vector. 

The solution of 4.7 is a simple exponential function of x. 

The sign of the coefficient of 6~ on the right hand side (RHS) determines 
z 

whether, for increasing x, the perturbation grows or decays in space. 

Without loss of generality, each stationary point can be considered to 

occur at x = 0 .  The evolutionary conditions for the particular shock 

or discontinuity of interest fix the relationship between U and the 

hydromagnetic speeds at the upstream and downstream stationary points 

thus determining the sign of the RHS of 4.7. With the above restricted 

definition of stability, the effect of an arbitrary perturbation on a 

resistive shock and rotational discontinuity is investigated in the 

following sections. Since many of the conclusions have already been 

presented in section 3.0, the discussion below will stress new features. 

4.2.1 Fast Resistive Shocks 

The upstream flow velocity for a fast shock exceeds all 

hydromagnetic propagation speeds, so that the RHS of 4.7 is positive, and 

the upstream point is unstable. Therefore all fast shocks can be 

initiated by resistivity. For 81 >> 1 it seems curious that resistive 

dissipation leads to a shock transition since magnetic field changes are 

expected to be an inconsequential part of the shock structure, However, 

the magnetic field energy must always increase across a fast shock so that 

resistive dissipation, although weak, is important for the transition process. 



About the  downstream s ta t ionary  point  f i r s t  note t h a t  

02 cannot equal zero f o r  6 2  < 1 since  the  p a r a l l e l  f a s t  shock i s  a  complete 

switch-on shock f o r  these  condit ions (Kantrowitz and Petschek, 1966). 

I f  6 2  > 1 and 0 2  = 0, = C s o  t h a t  the  denominator i n  4.7 i s  
C ~ 2  S2 

canceled by t h e  f i r s t  term i n  the  numberator. Since U;! L C = C 
A 2  SLpf 

t h e  

downstream po in t  i s  unstable.  For a l l  o ther  angles and 6 ' s  the  downstream 

point  is  s t a b l e  i f  U z  > C and unstable i f  U 2  < C . I f  B 2  < 1, t h e  range s 2 s 2 

of angles f o r  which U 2  < C can occur i s  ~r/2 L 02 2 cos 
s 2 

An uns table  downsteam po in t  implies t h a t  r e s i s t i v i t y  

i s  incapable of preventing f u r t h e r  shock steepening and es tab l i sh ing  a  

complete shock t r a n s i t i o n .  A viscous subshock, the re fo re ,  is  necessary 

f o r  a  s t a b l e  shock t r a n s i t i o n .  

4.2.2 Rotat ional  Discontinuity 

From the  evolutionary condit ions f o r  the  r o t a t i o n a l  

d iscont inui ty  the  numerator of 4.7 f o r  both the  upstream and downstream 

condit ions is  negative. Note t h a t  i f  81 = 82 = 0,  t h e  flow ve loc i ty  

equals the  intermediate speed a t  e i t h e r  the  upstream point  i f  61 < 1 

o r  the  downstream point  i f  82 > 1; hence these r o t a t i o n a l  d i s c o n t i n u i t i e s  

a r e  of zero s t rength .  The upstream po in t  i s  s t a b l e  (unstable)  i f  

u1 > C s1' ( U 1  < C . The downstream po in t  is  s t a b l e  (unstable)  i f  s 1 

U Z  > C (U2 < CS2) . Since f o r  f i n i t e  d i s s ipa t ion  the  flow ve loc i ty  s 2 

must decrease and the  temperature increase  across the  d i scon t inu i ty ,  i f  

U 1  > CS , SO t h a t  the  t r a n s i t i o n  is  i n i t i a t e d ,  U 2  cannot exceed C s o  
1 S 2 

Uzat the  downstream point  must be unstable.  Since U 1  < C U 2  > C i s  
SL' s 2 

the  only combination t h a t  might produce a well  defined t r a n s i t i o n ,  the re  

i s  no s t a b l e  r e s i s t i v e  r o t a t i o n a l  d iscont inui ty .  



4 . 2 . 3  Res is t ive  Slow Shocks 

F i r s t  consider the  upstream condit ions 81 # 0 and 

< 1. By the  evolut ionary condit ions f o r  slow shocks, t h e  numerator 

of 4.7 i s  negative. Therefore i f  U i  > C ( U 1  < C S l ) ,  the  upstream 
s 1 

po in t  i s  s t a b l e  (uns table) .  Note t h a t  these  condit ions include the  

complete switch-off shock. From Figure 2 ,  U 1  can exceed C i n  the  range s 1 

of angles o 5 81 5 cos-' [>] ; f o r  l a r g e r  angles c > c 
11' 

and the  
A 1 

s 1 

upstream po in t  i s  unstable.  I f  81 = 0,  the  gas dynamic shock l i m i t ,  

t he  upsteam po in t  i s  s t a b l e  unless U 1  = C the  maximum s t reng th  slow 
A1 ' 

shock, f o r  which t h e  RHS of 4.7 vanishes. Therefore i f  0 I 01 5 cos-' 

, $1 < 1, and U i  > C , t he  slow shock t r a n s i t i o n  cannot be s 1 

i n i t i a t e d  by r e s i s t i v e  d i s s ipa t ion .  

The i n t e r p r e t a t i o n  of t h i s  r e s u l t  follows from 

considering the  steepening of the  slow wave. I n  t h i s  range of angles 

and $1 < 1, the  slow wave is  pr imar i ly  e l e c t r o s t a t i c a l l y  polarized 

(Formisano and Kennel, 1969). I n  the  shock formed by t h i s  wave the  

magnetic energy ava i l ab le  f o r  heat ing the  plasma i s  small.  (Across the  

slow shock the  magnetic energy always decreases) .  Therefore i f  the  

$1 < 1 slow shock is  strong enough, U 1  > C r e s i s t i v i t y  alone i s  
s1' 

incapable of i n i t i a t i n g  t h e  shock steepening, and another d i s s ipa t ion  

mechanism i s  required.  I f  the  B1 < 1 slow shock i s  weak, U1 < C 
s1' 

magnetic d i s s i p a t i o n  is s u f f i c i e n t  t o  slow the  upstream f l u i d  and i n i t i a t e  

the  shock. For ~ / 2  > 81 2 cos-' [ ------ t he  l i n e a r  1 wave acquires a 

s u b s t a n t i a l  po la r i za t ion  along the  magnetic f i e l d ,  The r e s u l t i n g  slow 

shock has s u f f i c i e n t  magnetic energy ava i l ab le  f o r  d i s s ipa t ion  so t h a t  

r e s i s t i v i t y  s t a r t s  the  shock t r a n s i t i o n .  



I f  > l and 8 1  $ 0, the RElS of 4 , 7  is positive, and 

resistivity initiates the slow shock. If = 0, 81 > 1, U 1  = CAI - - C ~ ~ l  

and the shock is of zero strength. For $1 > 1 the linear slow wave is 

primarily electromagnetically polarized. Therefore the dissipation 

mechanism in the slow shock formed by the steepening of this wave should 

be primarily resistive. 

The downstream point of resistive slow shock is stable 

to perturbations for all 82 and $2 in agreement with the conclusion of 

section 3.2.1. Therefore if resistivity starts the slow shock, resistive 

dissipation alone is capable of providing a complete shock transition. 

4.3 Thermal Conductivity 

If resistivity and viscosity contribute negligibly to the 

dissipation, equations 4.1 - 4.5 describe the transition for a thermal 

conduction shock. As above, the equations are perturbed about a 

stationary point, and, after eliminating the other perturbed quantities 

in terms of 6 ~ ,  the following equation is obtained 

On the left hand side the coefficient of the gradient is proportional to 

thermal conduction scale length defined with respect to the flow velocity. 

As before ? 
I" ' eSL are the fast and slaw speeds with y set equal to unity 

in the sound speed, Since many of the results were presented in 

section 3.2.2, the discussion here will be brief. 



4.3,l Fast Thermal Conductioh Shocks 

From 4.8 the upstream point is unstable for all angles 

and 6's so that the fast shock can be initiated by thermal dissipation. 

If Up > eF2 [U2 < EF2), the downstream point is stable (unstable) to an 

arbitrary perturbation. Therefore, since differs only slightly from 
F 

C only for weak shocks can thermal conduction provide all the required 
F 

dissipation. For stronger shocks, either a resistive or viscous subshock 

is formed. 

4.3.2 Rotational Discontinuity 

Using the evolutionary conditions, from 4.8 the upstream 

point of the rotational discontinuity is stable (unstable) if U1 > cp. 
(I' . The downstream point is stable (unstable) if U2 > T 

F 2 1u2 < ~ ~ 2 ) .  
Since the pressure must increase and the flow velocity decrease across the 

discontinuity, the pair Ui < and Up > ? , which is the only stable 
F 1 F 2 

transition, cannot occur. Therefore the rotational discontinuity is 

disallowed for thermal dissipation. 

4.3.3 Slow Thermal Conduction Shocks 

The upstream point is unstable for all angles and 6's 

except the small range of 81 > 1 such that C > U1 > ? which is stable. 
I1 F 1 

Hence thermal conduction can initiate most slow shock transitions. The 

downstream point is stable (unstable) if U2 > ? [U2 < eSL2]. Therefore 
SL2 

thermal conductivity provides all the necessary dissipation only for 

weak slow shocks. 



4.4 

Dropping the resistive and thermal conduction terms, and 

eliminating V 6vZ, and 6 ~ ,  equations 4.1 - 4.5 reduce to the coupled 
z I 

equations 

For a parallel propagating shock, BZ = 0, 4.9 and 4.10 decouple and are 

solvable separately for 6eZ and 6 ~ .  For oblique propagation 4.9 and 

4.10 combine into a single second order differential equation for 6 ~ .  

These two cases will be considered separately. 

4.4.1 Parallel Shocks 

If BZ = 0 both upstream and downstream, the solutions 

of 4.9 and 4.10 are 

I 
6u = ~ U O  exp PU 

where 6uo and 6~ are initial perturbations, 
0 

First consider the fast shock for 61 > 1; 6 2  > 1. 

From 4.11 since U1 > C and U2 < C by the evolutionary conditions, 
s1' s 2 

the upstream (downstreax) velocity perturbation is unstable (stable), 



indicating a well-behaved shock transition. Also the upstream point 

is unstable if 61 < 1. For 82 < 1 the fast shock is a switch-on shock, 

and B + 0 .  Since the flow velocity always exceeds the intermediate 
z 2 

speed, 4.12 indicates that magnetic perturbation grows at both the 

upstream and downstream points. Therefore the fast shock does not 

remain parallel. An interpretation of these results will be delayed 

until after the oblique case has been discussed. 

The parallel slow shock for 61 > 1 and the parallel 

rotational discontinuity for 61 < 1 are of zero strength since U1 = C . 
I1 

The 61 > 1 rotational discontinuity is stable to velocity perturbations 

upstream and downstream and is unstable to magnetic perturbations 

upstream. Hence the parallel rotational discontinuity cannot be started. 

The parallel slow shock for 81 < 1 is unstable (stable) 

to velocity perturbations upstream (downstream). Since the flow velocity 

never exceeds the intermediate speed, the solution of 4.12 is 6~ = 0 
z 

upstream and downstream. Therefore the B 1  < 1 parallel slow shock has 

no magnetic changes across it and is the plasma analogue of the gas 

dynamic shock. For this shock viscosity alone provides a well defined 

transition. 

4.4.2 Oblique Shocks 

If B f 0 ,  by solving 4.10 for 6~ and substituting z z 

into 4.9, the following second order differential equation for 6~ is 

obtained 



To solve 4.13 6~ i s  assumed t o  vary a s  exp(Xx), and the  r e s u l t i n g  quadra t ic  

equation i n  has a s  so lu t ions  

The t subsc r ip t s  on r e f e r  t o  the  pos i t ive  and negative square roo t s ,  

respectively.  Note t h a t  A +  i s  r e a l .  
- 

I f  t h e  l i m i t  B = 0, i . e . ,  3 = 0 ,  is  taken i n  4.14, 
Z 

X corresponds t o  t h e  so lu t ion  4.11 and t o  4.12. Hence the  so lu t ions  + - 

f o r  6~ and 6~ which a r e  continuous a t  0 = 0 a r e  
Z 

6~ = 6uo exp X x ( +  1 

6~ z = 6~ z o rxp(1  - x) 



Two f u r t h e r  expressions a r e  useful  i n  discussing these  

solu t ions .  From the  p roper t i e s  of quadrat ic  equations and 4.13, the  

product of A+ X - i s  given by 

IT 
I n  the  range of angles 8 << 1 and 9 % - t he  square r o o t  i n  4.14 can be 

2 ' 
expanded t o  obta in  the  approximate so lu t ions  

2 u2 -c: -cA s i n  e + 
P I 

For s impl ic i ty  the  s t a b i l i t y  discussion below w i l l  concentrate on near  

p a r a l l e l  and perpendicular propagation. Extension t o  a r b i t r ~ r y  oblique 

angles i s  accomplished by 4,1?. 



4.4.3 Fast Shocks 

About the upstream point A > 0 and A > 0 for both + - 
7T << 1 and 81 Q, -. Since from 4.17 A A > 0 ,  it is likely that viscosity 
2 + - 

is always capable of starting the fast shock transition. About the 

> 
downstream point 4.17 yields A+)\ - < 0 .  From 4.18 and 4.19 A+ < 0 and 

< 2 A > 0 if U: : c2 + c2 sin 82. Therefore the downstream point for the - S2 A2 

fast shock is unstable to either velocity or magnetic perturbations, and 

viscosity alone is incapable of providing a complete fast shock transition. 

Since the magnetic field increases across all fast shocks, resistive 

dissipation must be part of the shock structure even though the majority 

of the dissipation is accomplished by viscosity. Therefore the structure 

of fast shocks, for which resistivity alone is insufficient, consists of 

a broad resistive region for the magnetic field change and a viscous 

subshock. 

Rotational Discontinuity 

From 4.17 A+L < 0 for both upstream and downstream 

points. Therefore the viscous rotational discontinuity is always 

unstable to an arbitrary perturbation. 

4.4.5 Slow Shocks 

The upstream point for the viscous slow shock has 

A A < 0 .  Across the parallel 81 < 1 slow shock the magnetic field 
Jr - 

is unchanged so that 1 - < 0 simply implies that 6~~ = 0 .  For oblique 

propagation, however, the magnetic field decreases across the slow shock 

so that A X < 0 indicates that viscosity alone is insufficient for a + - 
complete shock transition. 



F i r s t  consider the  slow shock f o r  B r  < 1 and << 1. 

> < > 
F r o m 4 . 1 8 a n d 4 . 1 9 h  < O a n d h  > O i f ~ :  < c 2  + c 2  Sin2ol .  + - S 1  A1 

shock is  s t rong,  U1 > C v i scos i ty  s t a r t s  the  ve loc i ty  bu t  not  the  
s1' 

magnetic t r a n s i t i o n .  The r e s u l t s  of sec t ion  4.2.3 indica ted  t h a t  f o r  

these  parameters r e s i s t i v i t y  alone could not  s t a r t  t h e  slow shock. 

Therefore the  shock s t r u c t u r e  probably contains an upstream viscous 

layer  across which t h e  ve loc i ty  changes; r e s i s t i v e  d i s s i p a t i o n  then 

decreases the  magnetic f i e l d .  Weaker slow shocks, Ui < C a r e  not  
s 1 

s t a r t e d  by v i s c o s i t y  b u t  a r e  by r e s i s t i v i t y ,  and therefore  probably 

possess only a  r e s i s t i v e  s t ruc tu re .  

For 81 << 1, 81 > 1, 4.18 and 4.19 y ie ld  h  < 0  and + 
h - > 0  so  t h a t  v i s c o s i t y  does not  s t a r t  the  ve loc i ty  t r a n s i t i o n .  Also 

IT 
i f  81 % -, h+ < 0  and h > 0 f o r  a l l  81. In  these  two cases the  magnetic 2 - 
f i e l d  experiences a  l a r g e  change across the  slow shock, and the re fo re ,  

considering the  r e s u l t s  of sec t ion  4.2.3, r e s i s t i v i t y  probably dominates 

the  shock s t ruc tu re .  

From 4.17 t h e  downstream po in t  of  t h e  slow shock has 

IT h+h - > 0. Both 82 << l a n d  O 2  % - h a v e  h+ < 0  and h < 0  s o  it i s  2  - 
l i k e l y  t h a t  the  downstream po in t  i s  always s t ab le .  Recall from 

sec t ion  4.2.3 t h a t  the  downstream point  is  a l s o  s t a b l e  f o r  r e s i s t i v e  

slow shocks. 



5.0 Discussion 

The equations of hydromagnetics including dissipation describe the 

shock transition between the upstream and downstream stationary points 

at which the plasma quantities obey the Rankine-Hugoniot jump conditions. 

The effect of each type of dissipation mechanism on the shock structure 

was determined by solving for the linear response to an arbitrary 

perturbation about the two stationary points. The evolutionary conditions 

prescribed whether the perturbations grew or decayed in space. A well 

defined shock transition for a particular form of dissipation is one in 

which the upstream point is unstable and the downstream point is stable 

to perturbations. The conclusions of the analysis are summarized below: 

1. The upstream point of the fast resistive shock is always 

unstable, indicating that resistivity starts the shock steepening. The 

I T  
downstream point in the range of angles - > 82 1 cos-' 

2 - 

and at all angles for 62 > 1 is stable if U2 > C and unstable if s 2 
U2 < c ; for 82 < 1 and 0 5. 82 L cos-' the downstream point is 

s 2 

stable. If the downstream point is stable (unstable), resistivity alone 

is (not) capable of prohibiting further shock steepening and providing 

the required dissipation. If unstable, a subshock is necessary for a 

complete transition. 

[ the upstream point of the 2. For 61 < 1 and 0 2 8 1  Lcos-l - 

resistive slow shock is stable if U1 > C . The linear slow waves from 
S 1 

which this shock steepens are primarily electrostatically polarized. 

Since the resultant shock has little magnetic energy available for 

dissipation, resistivity alone cannot start the shock steepening and 



another dissipation process is required. For larger angles and all 

6 2  > 1 shocks, the upstream point is unstable -- a reasonable conclusion 

since the shock is formed by waves that are primarily electromagnetic. 

The downstream point is stable for all 62 and 82 so that resistivity 

can complete the slow shock transition. 

3 .  Thermal conduction shocks possess unstable downstream points 

whenever for fast shocks U2 < and for slow shocks U2 < . Since 
F2 SL2 

2 and 2 differ little from C and CSL, respectively, thermal conductivity 
F SL F 

provides the necessary dissipation only in the case of weak shocks. 

Stronger shocks require either a resistive or viscous subshock. 

4. Viscosity slows all hydromagnetic wave speeds to zero, and there- 

fore is the strongest form of dissipation. The upstream point of the viscous 

fast shock is always unstable. The downstream point is unstable to either 

velocity or magnetic perturbations indicating that viscosity alone cannot 

complete the shock transition. Some resistive dissipation is necessary to 

increase the magnetic field across the shock. Therefore the strong fast 

shock structure consists of both a resistive layer and a viscous subshock. 

5. The parallel 61 < 1 slow shock, having steepened from a purely 

electrostatic linear wave, requires no magnetic dissipation so that 

viscosity alone is sufficient for the shock transition. The oblique slow 

shock cannot be completely started by viscosity since either the velocity 

or the magnetic field perturbation is stable. For 61 < 1 and 81 << 1 

strong shocks, U 1  > C have both viscous and resistive dissipation 
s1' 

whereas weak shocks, U I  < C , probably are resistive. Very oblique shocks 
s 1 

for (31 < 1 and all (31 > 1 shocks, which have substantial magnetic changes 

across them, require resistivity to initiate the shock steepening. The 

downstream point of the viscous slow shock is stable to perturbations. 



6. The rotational discontinuity is disallowed for resistive, 

thermal conduction, and viscous dissipation since no unstable-upstream, 

stable-downstream combination exists. 

In this paper no attempt has been made to determine at what Mach 

number a particular dissipation process fails to provide a complete shock 

transition. The relevant criteria developed here combined with the 

 ank kine-Hugoniot conditions would provide the solution to this problem. 

When more than one dissipation process is required, details of the shock 

structure must, of course, be determined by solving the non-linear hydro- 

magnetic differential equations. 

Finally a comment on the applicability of the above results to 

collisionless shocks is perhaps warranted. In acollisionless shock 

dissipation mechanisms other than those considered here, such as equali- 

zation of electron-ion temperature differences, relaxation of pressure 

anisotropy, wave-wave and wave-particle interactions, might contribute 

to the shock structure. Each in turn must be examined as to whether or 

not the required dissipation can be supplied. Some conclusions of the 

hydromagnetic theory should, however, be applicable. The anomalous 

dissipation for strong fast shocks must include both viscous and resistive 

interactions. The dissipation for very oblique slow shocks is expected 

to have the form of resistivity. Almost parallel strong slow shocks 

should require both an anomalous viscosity, which probably provides 

most of the dissipation, and some anomalous resistivity. Dissipation by 

anomalous thermal conduction is sufficient only for very weak fast and 

slow shocks. 
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FIGURE CAPTIONS 

Figure 1. The phase velocity of the perpendicular fast wave vs the 

wave vector k is sketched: when kr >> 1, C is reduced to CS; when m F 

kr >> 1, C is reduced to zero. For comparison a typical upstream flow 
e F 

velocity U1 > C and two possible downstream flow velocities C > U; 
F ' F 

> Cs > US' are included. If U2 > C waves propagating toward the shock s ' 
on the downstream side are convected away by the fluid; shock steepening 

ceases and a steady shock of thickness % r is formed. For strong shocks 
m 

such that U" < C downstream waves continue to reach the shock causing 
2 S 

further steepening until the viscous scale length, r is reached. Since e ' 
downstream waves have C + 0 when kre >> 1 they are convected away from 

F 

the shock; shock steepening ceases and a steady shock with a viscous 

subshock of thickness 2, r and a more gradual magnetic shock of thickness 
e 

% r is formed. m 

Figure 2. A quarter quadrant of a Friedrich's diagram for 6 % 1/2 

and 6 % 2 (solid lines) including the sound speed (dashed line) is 

sketched. 

Figure 3. A quarter quadrant of a Friedrich's diagram for 6 % 1/2 

and f3 % 2 is sketched (solid lines). Also shown (dashed lines) are the 

fast S and slow eSL speeds with y = 1 appropriate for isothermal 
F 

propagation when kr >> 1, 
t 








